Difference between revisions of "SpecialBoards"

From Interaction Station Wiki
Jump to navigation Jump to search
Line 73: Line 73:
 
Speech recognition:  
 
Speech recognition:  
  
Sparkfun Edge (18,09) https://www.antratek.nl/edge-development-board-apollo3-blue
+
*Sparkfun Edge (18,09) https://www.antratek.nl/edge-development-board-apollo3-blue
  
 
Gesture recognition:
 
Gesture recognition:
  
Intel Curie Tiny Tile
+
*Intel Curie Tiny Tile
  
 
== Slow and Fast Sensors ==
 
== Slow and Fast Sensors ==

Revision as of 03:41, 2 February 2020

A wave of specialized micro controller boards

For a project with interactive kites: https://airlaboart.wordpress.com, I bought and investigated a lot of boards with special characteristics.

All the different categories below require quite a bit of time to get used to and to get it working.

Sometimes you have to write in another programing language, like Micropython

Sometimes you have to install a new tool chain, using the terminal window.

A few links showing this tool chain pain:

https://airlaboart.wordpress.com/2019/07/04/further-intelligence/

https://airlaboart.wordpress.com/2019/07/07/and-the-third-toolchain-maix-dock/

After this project I investigated also the

BBC Microbit (22,95) https://www.floris.cc/shop/en/home/1848-microbit-go-bundel-microbit.html

Adafruit circuit playground express (29,95) https://www.adafruit.com/product/3333

SD cards included

For fast real time data collection. The data are stored on the SD card and can later be retrieved and analyzed, for instance using Processing.

Boards with SD-card:

  • Sparkfun Razor

IMU sensors incorporated – https://learn.sparkfun.com/tutorials/9dof-razor-imu-m0-hookup-guide/all#libraries-and-example-firmware

If the SD card is not on the board you can use this device:

OpenLog: https://learn.sparkfun.com/tutorials/openlog-hookup-guide?_ga=2.10013043.776216311.1558331043-1571920724.1558331043#firmware

Acceleration included

A lot of boards have acceleration sensors included.

These sensors come into a few variaties.

  • 3 axes, acceleration x,y,z
  • 6 axes, acceleration x,y,z, gyro x,y,z
  • 9 axes, acceleration x,y,z, gyro x,y,z, compass x,y,z

Only the

You could think that integrating the acceleration would make it possible to keep track of the sensor and calculate the position after a certain time. The formulas from physics suggest this: just integrating over time. The problem is that the errors are building up.

Gimbal lock

Even more problems: you really need the coordinates to be in so called quaternions and not Euler angles to get a nice graph.

The Sparkfun Razor software has this possibility built in.

Camera included

The bigger boards now have cameras included:

The OpenMV system has an IDE and in this IDE, there is face recognition (sort of).

AI included

Speech recognition:

Gesture recognition:

  • Intel Curie Tiny Tile

Slow and Fast Sensors

Some data have to be tracked fast, like acceleration, gyro, compass, others can be sampled at a lower rate, like temperature, pollution, air pressure.

This means that different sets of sensors can be grouped together.


BLE included

The BBC Microbit has BLE and the microbit can communicate amongst themselves quite easily.

(I saw that the Adafruit circuit Express now also has BLE).


Summery of the boards

manual: https://www.pjrc.com/teensy/K66P144M180SF5RMV2.pdf

SD card: https://forum.pjrc.com/threads/55114-SD-Datalogging-Best-Practice-in-2019

IMU library: NXPMotionSense

  • Intel Curie Tiny Tile

https://software.intel.com/en-us/node/675623

Manual: https://www.intel.com/content/dam/support/us/en/documents/boardsandkits/curie/intel-curie-module-datasheet.pdf

Review: https://www.element14.com/community/roadTestReviews/2425/l/element14-tinytile-intel-curie-based-board-review