Difference between revisions of "Docker"

From Interaction Station Wiki
Jump to navigation Jump to search
Line 58: Line 58:
  
 
'''Checking if Nvidia Driver is properly installed. Type:'''
 
'''Checking if Nvidia Driver is properly installed. Type:'''
 +
*nvidia-smi
 
*nvidia-settings
 
*nvidia-settings
  
'''Installing CUDA:'''
+
'''Installing CUDA 9.0 for Ubuntu 16.04 (the latest version is not supported by TensorFlow):'''
*sudo chmod -R a+rwx /media/MachineLearning/
+
*wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
 +
*wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libcudnn7_7.0.5.15-1+cuda9.0_amd64.deb
 +
*wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libcudnn7-dev_7.0.5.15-1+cuda9.0_amd64.deb
 +
*wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libnccl2_2.1.4-1+cuda9.0_amd64.deb
 +
*wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libnccl-dev_2.1.4-1+cuda9.0_amd64.deb
 +
*sudo dpkg -i cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
 +
*sudo dpkg -i libcudnn7_7.0.5.15-1+cuda9.0_amd64.deb
 +
*sudo dpkg -i libcudnn7-dev_7.0.5.15-1+cuda9.0_amd64.deb
 +
*sudo dpkg -i libnccl2_2.1.4-1+cuda9.0_amd64.deb
 +
*sudo dpkg -i libnccl-dev_2.1.4-1+cuda9.0_amd64.deb
 +
*sudo apt-get update
 +
*sudo apt-get install cuda=9.0.176-1
 +
*sudo apt-get install libcudnn7-dev
 +
*sudo apt-get install libnccl-dev
  
 
'''Checking if CUDA is properly installed. Type:'''
 
'''Checking if CUDA is properly installed. Type:'''
 
*nvcc --version
 
*nvcc --version
 +
 +
*Resources used:
 +
*https://askubuntu.com/questions/61396/how-do-i-install-the-nvidia-drivers
 +
*https://medium.com/@bbloks/a-machine-learning-environment-with-ubuntu-and-gpu-acceleration-in-5-steps-765608325356
  
 
'''Installing Docker CE on Ubuntu 16.04:'''
 
'''Installing Docker CE on Ubuntu 16.04:'''

Revision as of 13:58, 25 July 2018

ML Docker Image installed on the Interaction Station ML computers:
Deepo. It includes:

  • cudnn
  • theano
  • tensorflow
  • sonnet
  • pytorch
  • keras
  • lasagne
  • mxnet
  • cntk
  • chainer
  • caffe
  • caffe2
  • torch

Run Deepo image with Docker:

  • docker run -it ufoym/deepo:gpu bash



Setting up ML computers:

  • Linux distribution installed: Ubuntu 16.04

Partition made for machine learning:MachineLearning

  • In Windows: Disk Management -> Resize DataStorage
  • Create new ext4 patition

Mounting the partition automatically:

  • Get the UUID of the learning:MachineLearning partition
  • sudo blkid
  • Add partition to fstab:
  • sudo nano /etc/fstba
  • Add at the bottom these two lines:
  • UUID=(id of the MachineLearning partition) /media/MachineLearning ext4 1 2
  • UUID=(id of the DataStorage partition) /media/DataStorage ntfs-3g defaults=en_US.UTF-8 0 0

Give writting permissions to new MachineLearning partition

  • sudo chmod -R a+rwx /media/MachineLearning/

Installing NVIDIA Driver:

  • Set Ubuntu to boot on console mode. Type:
  • systemd.unit=multi-user=target
  • sudo reboot now
  • Login and in console mode, type:
  • sudo add-apt-repository ppa:graphics-drivers/ppa
  • sudo apt update
  • sudo apt upgrade
  • For GeForce 1070Ti (07/2018), type:
  • sudo apt-get install nvidia-390
  • Re-set Ubuntu to boot on graphical mode. Type:
  • sudo systemctl set-default graphical.target
  • sudo reboot now


Checking if Nvidia Driver is properly installed. Type:

  • nvidia-smi
  • nvidia-settings

Installing CUDA 9.0 for Ubuntu 16.04 (the latest version is not supported by TensorFlow):

Checking if CUDA is properly installed. Type:

  • nvcc --version

Installing Docker CE on Ubuntu 16.04:

Installing Deepo:




Change Docker root dir using systemd

Docker - clean up all the volumes

  • sudo docker system prune -a -f --volumes

Other options:

NTFS fstab wizard:

  • sudo apt-get install ntfs-config
  • sudo ntfs-config

Format large capacity HD with fs ExFat for having access to it from Ubuntu:

  • On Windows 10
  • cmd
  • diskpart
  • select disk '#' (where # is the number of the target drive)
  • list part
  • select part # (where # is the number of the partition)
  • format fs=exfat QUICK