Difference between revisions of "Docker"

From Interaction Station Wiki
Jump to navigation Jump to search
Line 23: Line 23:
  
 
=Installing nvidia-docker 1.0 on Ubuntu 16.04:=
 
=Installing nvidia-docker 1.0 on Ubuntu 16.04:=
*# nvidia-docker2 still not supported by nvidia-docker-composite
+
* #nvidia-docker2 still not supported by nvidia-docker-composite
 
*docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
 
*docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
 
*sudo apt-get purge -y nvidia-docker
 
*sudo apt-get purge -y nvidia-docker
Line 34: Line 34:
 
*sudo apt-get install -y nvidia-docker2
 
*sudo apt-get install -y nvidia-docker2
 
*sudo pkill -SIGHUP dockerd
 
*sudo pkill -SIGHUP dockerd
*# Test nvidia-smi with the latest official CUDA image
+
* #Test nvidia-smi with the latest official CUDA image
 
*docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi
 
*docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi
 
*Link:
 
*Link:

Revision as of 05:42, 12 October 2018

ML Docker Image installed on the Interaction Station ML computers:

Installing Docker CE on Ubuntu 16.04:

Change Docker root dir using systemd

Docker - clean up all the volumes

  • sudo docker system prune -a -f --volumes


Installing nvidia-docker 1.0 on Ubuntu 16.04:

  • #nvidia-docker2 still not supported by nvidia-docker-composite
  • docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
  • sudo apt-get purge -y nvidia-docker
  • curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \

sudo apt-key add - distribution=$(. /etc/os-release;echo $ID$VERSION_ID)

Deepo

It includes:

  • cudnn
  • theano
  • tensorflow
  • sonnet
  • pytorch
  • keras
  • lasagne
  • mxnet
  • cntk
  • chainer
  • caffe
  • caffe2
  • torch


Installing Deepo:

Run Deepo image with Docker:

  • sudo nvidia-docker run -it ufoym/deepo:gpu bash

Run Deepo image with Docker (with python 2.7):

  • sudo nvidia-docker run -it ufoym/deepo:py27 bash

Setting up ML computers:

  • Linux distribution installed: Ubuntu 16.04

Partition made for machine learning:MachineLearning

  • In Windows: Disk Management -> Resize DataStorage
  • Create new ext4 patition

Mounting the partition automatically:

Get the UUID of the learning:MachineLearning partition

  • sudo blkid

Add partition to fstab:

  • sudo nano /etc/fstab
  • Add at the bottom these two lines:
  • UUID=(id of the MachineLearning partition) /media/MachineLearning rw,suid,dev,auto,user,async,exec 0 2
  • UUID=(id of the DataStorage partition) /media/DataStorage ntfs-3g defaults=en_US.UTF-8 0 0

Give writing permissions to new MachineLearning partition

  • sudo chmod -R a+rwx /media/MachineLearning/
  • Need extra space? Extending the partition

https://askubuntu.com/questions/492054/how-to-extend-my-root-partition

Installing NVIDIA Driver:

  • Set Ubuntu to boot on console mode. Type:
  • sudo apt-get install systemd
  • sudo systemctl set-default multi-user.target
  • sudo reboot now
  • Login and in console mode, type:
  • sudo add-apt-repository ppa:graphics-drivers/ppa
  • sudo apt update
  • sudo apt upgrade
  • For GeForce 1070Ti (07/2018), type:
  • sudo apt-get install nvidia-390
  • Re-set Ubuntu to boot on graphical mode. Type:
  • sudo systemctl set-default graphical.target
  • sudo reboot now

Checking if Nvidia Driver is properly installed. Type:

  • nvidia-smi
  • nvidia-settings

Installing CUDA 9.0 for Ubuntu 16.04 (the latest version is not supported by TensorFlow):

Checking if CUDA is properly installed. Type:

  • nvcc --version

Resources used:


Other options:

NTFS fstab wizard:

  • sudo apt-get install ntfs-config
  • sudo ntfs-config

Format large capacity HD with fs ExFat for having access to it from Ubuntu:

  • On Windows 10
  • cmd
  • diskpart
  • select disk '#' (where # is the number of the target drive)
  • list part
  • select part # (where # is the number of the partition)
  • format fs=exfat QUICK