Difference between revisions of "Docker"
Jump to navigation
Jump to search
(Docker) |
|||
(21 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | ML Docker Image installed on the Interaction Station ML computers:<br/> | + | ML Docker Image installed on the Interaction Station ML computers (Ubuntu 16.04):<br/> |
− | =Installing Docker CE | + | =Installing Docker CE:= |
*sudo apt-get install apt-transport-https ca-certificates curl software-properties-common | *sudo apt-get install apt-transport-https ca-certificates curl software-properties-common | ||
*curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - | *curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - | ||
Line 9: | Line 9: | ||
*More info: https://unix.stackexchange.com/questions/363048/unable-to-locate-package-docker-ce-on-a-64bit-ubuntu | *More info: https://unix.stackexchange.com/questions/363048/unable-to-locate-package-docker-ce-on-a-64bit-ubuntu | ||
− | ==Change Docker root dir using systemd== | + | ==Change Docker root dir using systemd (Don't do this, set volume instead)== |
*systemctl status docker.service | *systemctl status docker.service | ||
*sudo nano /etc/default/docker | *sudo nano /etc/default/docker | ||
Line 21: | Line 21: | ||
*sudo docker system prune -a -f --volumes | *sudo docker system prune -a -f --volumes | ||
+ | |||
+ | =Installing nvidia-docker v1 (deprecated!):= | ||
+ | *docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f | ||
+ | *sudo apt-get purge -y nvidia-docker | ||
+ | *curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \ | ||
+ | *sudo apt-key add - | ||
+ | *distribution=$(. /etc/os-release;echo $ID$VERSION_ID) | ||
+ | *curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \ | ||
+ | *sudo tee /etc/apt/sources.list.d/nvidia-docker.list | ||
+ | *sudo apt-get update | ||
+ | *sudo apt-get install -y nvidia-docker | ||
+ | *sudo pkill -SIGHUP dockerd | ||
+ | * #Test nvidia-smi with the latest official CUDA image | ||
+ | *docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi | ||
+ | *Link: | ||
+ | *https://github.com/NVIDIA/nvidia-docker | ||
+ | |||
+ | =Installing docker-compose:= | ||
+ | |||
+ | =Installing nvidia-docker-compose:= | ||
+ | *pip install nvidia-docker-compose | ||
+ | *link: https://hackernoon.com/docker-compose-gpu-tensorflow-%EF%B8%8F-a0e2011d36 | ||
+ | * Permission Denied on curl and save for docker compose: https://github.com/docker/machine/issues/652 | ||
+ | |||
+ | =Using Docker with nvidia-docker-compose= | ||
+ | |||
+ | *Public docker repository (When doing FROM in Dockerfile, we need to select one of those) | ||
+ | *https://hub.docker.com/ | ||
+ | |||
+ | *Dir structure: | ||
+ | *docker-compose.yml | ||
+ | *deepo | ||
+ | *deepo/do_not_finish.sh | ||
+ | *deepo/Dockerfile | ||
+ | *deepo_data (folder that is visible by deepo image) | ||
+ | |||
+ | *docker-compose.yml: | ||
+ | version: '3' | ||
+ | services: | ||
+ | #machine name | ||
+ | deepo: | ||
+ | #container name | ||
+ | container_name: deepo | ||
+ | #path to Dockerfile | ||
+ | build: deepo | ||
+ | command: sh do_not_finish.sh | ||
+ | volumes: | ||
+ | - ./deepo_data:/media/deepo_data | ||
+ | tty: true | ||
+ | |||
+ | *Dockerfile: | ||
+ | FROM ufoym/deepo | ||
+ | ADD do_not_finish.sh / | ||
+ | *Dockerfiles guide: | ||
+ | *https://rock-it.pl/how-to-write-excellent-dockerfiles/ | ||
+ | |||
+ | *do_not_finish.sh: | ||
+ | #!/bin/bash | ||
+ | sh -c 'while :; do sleep 100; done' | ||
+ | |||
+ | *We need that endless loop, because docker-compose closes the container when is deployed | ||
+ | *The endless loop allowed us to use it with a docker exec | ||
+ | |||
+ | ==Run it== | ||
+ | *Steps 1 and 2: Within the folder where is the docker-compose.yml file | ||
+ | *sudo nvidia-docker-compose build | ||
+ | *sudo nvidia-docker-compose up | ||
+ | |||
+ | *Step 3: From another terminal: | ||
+ | *sudo nvidia-docker exec -it deepo bash | ||
+ | |||
+ | ==Troubleshooting problems== | ||
+ | *Check nvidia-docker version (needs to be version 1) | ||
+ | *nvidia-docker version | ||
+ | *More info: | ||
+ | *https://github.com/eywalker/nvidia-docker-compose/issues/26 | ||
+ | |||
+ | |||
+ | *Permission denied: u'./docker-compose.yml | ||
+ | *https://github.com/docker/docker-snap/issues/26 | ||
=Deepo= | =Deepo= | ||
Line 50: | Line 130: | ||
*sudo nvidia-docker run -it ufoym/deepo:py27 bash | *sudo nvidia-docker run -it ufoym/deepo:py27 bash | ||
− | + | [[Category: AI & Machine Learning]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 10:22, 25 November 2022
ML Docker Image installed on the Interaction Station ML computers (Ubuntu 16.04):
Installing Docker CE:
- sudo apt-get install apt-transport-https ca-certificates curl software-properties-common
- curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
- sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu xenial stable"
- sudo apt-get update
- More info: https://unix.stackexchange.com/questions/363048/unable-to-locate-package-docker-ce-on-a-64bit-ubuntu
Change Docker root dir using systemd (Don't do this, set volume instead)
- systemctl status docker.service
- sudo nano /etc/default/docker
- Edit ExecStart line to look like this ExecStart =/usr/bin/dockerd -g /media/MachineLearning/docker -H fd://
- systemctl daemon-reload
- systemctl restart docker
- sudo docker info - verify the root dir has updated
- https://github.com/IronicBadger/til/blob/master/docker/change-docker-root.md
Docker - clean up all the volumes
- sudo docker system prune -a -f --volumes
Installing nvidia-docker v1 (deprecated!):
- docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
- sudo apt-get purge -y nvidia-docker
- curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
- sudo apt-key add -
- distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
- curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
- sudo tee /etc/apt/sources.list.d/nvidia-docker.list
- sudo apt-get update
- sudo apt-get install -y nvidia-docker
- sudo pkill -SIGHUP dockerd
- #Test nvidia-smi with the latest official CUDA image
- docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi
- Link:
- https://github.com/NVIDIA/nvidia-docker
Installing docker-compose:
Installing nvidia-docker-compose:
- pip install nvidia-docker-compose
- link: https://hackernoon.com/docker-compose-gpu-tensorflow-%EF%B8%8F-a0e2011d36
- Permission Denied on curl and save for docker compose: https://github.com/docker/machine/issues/652
Using Docker with nvidia-docker-compose
- Public docker repository (When doing FROM in Dockerfile, we need to select one of those)
- https://hub.docker.com/
- Dir structure:
- docker-compose.yml
- deepo
- deepo/do_not_finish.sh
- deepo/Dockerfile
- deepo_data (folder that is visible by deepo image)
- docker-compose.yml:
version: '3' services: #machine name deepo: #container name container_name: deepo #path to Dockerfile build: deepo command: sh do_not_finish.sh volumes: - ./deepo_data:/media/deepo_data tty: true
- Dockerfile:
FROM ufoym/deepo ADD do_not_finish.sh /
- Dockerfiles guide:
- https://rock-it.pl/how-to-write-excellent-dockerfiles/
- do_not_finish.sh:
- !/bin/bash
sh -c 'while :; do sleep 100; done'
- We need that endless loop, because docker-compose closes the container when is deployed
- The endless loop allowed us to use it with a docker exec
Run it
- Steps 1 and 2: Within the folder where is the docker-compose.yml file
- sudo nvidia-docker-compose build
- sudo nvidia-docker-compose up
- Step 3: From another terminal:
- sudo nvidia-docker exec -it deepo bash
Troubleshooting problems
- Check nvidia-docker version (needs to be version 1)
- nvidia-docker version
- More info:
- https://github.com/eywalker/nvidia-docker-compose/issues/26
- Permission denied: u'./docker-compose.yml
- https://github.com/docker/docker-snap/issues/26
Deepo
It includes:
- cudnn
- theano
- tensorflow
- sonnet
- pytorch
- keras
- lasagne
- mxnet
- cntk
- chainer
- caffe
- caffe2
- torch
Installing Deepo:
Run Deepo image with Docker:
- sudo nvidia-docker run -it ufoym/deepo:gpu bash
Run Deepo image with Docker (with python 2.7):
- sudo nvidia-docker run -it ufoym/deepo:py27 bash