Difference between revisions of "Docker"

From Interaction Station Wiki
Jump to navigation Jump to search
 
(41 intermediate revisions by 2 users not shown)
Line 1: Line 1:
ML Docker Image installed on the Interaction Station ML computers:<br/>
+
ML Docker Image installed on the Interaction Station ML computers (Ubuntu 16.04):<br/>
'''Deepo'''. It includes:<br/>
+
 
 +
=Installing Docker CE:=
 +
*sudo apt-get install apt-transport-https ca-certificates curl software-properties-common
 +
*curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
 +
*sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu xenial stable"
 +
*sudo apt-get update
 +
 
 +
*More info: https://unix.stackexchange.com/questions/363048/unable-to-locate-package-docker-ce-on-a-64bit-ubuntu
 +
 
 +
==Change Docker root dir using systemd (Don't do this, set volume instead)==
 +
*systemctl status docker.service
 +
*sudo nano /etc/default/docker
 +
*Edit ExecStart line to look like this ExecStart =/usr/bin/dockerd -g /media/MachineLearning/docker -H fd://
 +
*systemctl daemon-reload
 +
*systemctl restart docker
 +
*sudo docker info - verify the root dir has updated
 +
*https://github.com/IronicBadger/til/blob/master/docker/change-docker-root.md
 +
 
 +
==Docker - clean up all the volumes==
 +
*sudo docker system prune -a -f --volumes
 +
 
 +
 
 +
=Installing nvidia-docker v1 (deprecated!):=
 +
*docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
 +
*sudo apt-get purge -y nvidia-docker
 +
*curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
 +
*sudo apt-key add -
 +
*distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
 +
*curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
 +
*sudo tee /etc/apt/sources.list.d/nvidia-docker.list
 +
*sudo apt-get update
 +
*sudo apt-get install -y nvidia-docker
 +
*sudo pkill -SIGHUP dockerd
 +
* #Test nvidia-smi with the latest official CUDA image
 +
*docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi
 +
*Link:
 +
*https://github.com/NVIDIA/nvidia-docker
 +
 
 +
=Installing docker-compose:=
 +
 
 +
=Installing nvidia-docker-compose:=
 +
*pip install nvidia-docker-compose
 +
*link: https://hackernoon.com/docker-compose-gpu-tensorflow-%EF%B8%8F-a0e2011d36
 +
* Permission Denied on curl and save for docker compose: https://github.com/docker/machine/issues/652
 +
 
 +
=Using Docker with nvidia-docker-compose=
 +
 
 +
*Public docker repository (When doing FROM in Dockerfile, we need to select one of those)
 +
*https://hub.docker.com/
 +
 
 +
*Dir structure:
 +
*docker-compose.yml
 +
*deepo
 +
*deepo/do_not_finish.sh
 +
*deepo/Dockerfile
 +
*deepo_data (folder that is visible by deepo image)
 +
 
 +
*docker-compose.yml:
 +
version: '3'
 +
services:
 +
  #machine name
 +
  deepo:
 +
    #container name
 +
    container_name: deepo
 +
    #path to Dockerfile
 +
    build: deepo
 +
    command: sh do_not_finish.sh
 +
    volumes:
 +
      - ./deepo_data:/media/deepo_data
 +
    tty: true
 +
 
 +
*Dockerfile:
 +
FROM ufoym/deepo
 +
ADD do_not_finish.sh /
 +
*Dockerfiles guide:
 +
*https://rock-it.pl/how-to-write-excellent-dockerfiles/
 +
 
 +
*do_not_finish.sh:
 +
#!/bin/bash
 +
sh -c 'while :; do sleep 100; done'
 +
 
 +
*We need that endless loop, because docker-compose closes the container when is deployed
 +
*The endless loop allowed us to use it with a docker exec
 +
 
 +
==Run it==
 +
*Steps 1 and 2: Within the folder where is the docker-compose.yml file
 +
*sudo nvidia-docker-compose build
 +
*sudo nvidia-docker-compose up
 +
 
 +
*Step 3: From another terminal:
 +
*sudo nvidia-docker exec -it deepo bash
 +
 
 +
==Troubleshooting problems==
 +
*Check nvidia-docker version (needs to be version 1)
 +
*nvidia-docker version
 +
*More info:
 +
*https://github.com/eywalker/nvidia-docker-compose/issues/26
 +
 
 +
 
 +
*Permission denied: u'./docker-compose.yml
 +
*https://github.com/docker/docker-snap/issues/26
 +
 
 +
=Deepo=
 +
It includes:<br/>
 
*cudnn  
 
*cudnn  
 
*theano  
 
*theano  
Line 14: Line 117:
 
*caffe2
 
*caffe2
 
*torch
 
*torch
docker run -it ufoym/deepo:gpu bash
 
'''Installing Docker CE on Ubuntu 16.04:'''
 
*sudo apt-get install apt-transport-https ca-certificates curl software-properties-common
 
*curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
 
*sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu xenial stable"
 
*sudo apt-get update
 
  
*More info: https://unix.stackexchange.com/questions/363048/unable-to-locate-package-docker-ce-on-a-64bit-ubuntu
 
  
'''Installing Deepo:'''
+
==Installing Deepo:==
*[http://www.nvidia.com/content/DriverDownload-March2009/confirmation.php?url=/XFree86/Linux-x86_64/340.107/NVIDIA-Linux-x86_64-340.107.run&lang=us&type=TITAN Pre-requisite 1: Nvidia driver ]
+
*[http://www.nvidia.com/content/DriverDownload-March2009/confirmation.php?url=/XFree86/Linux-x86_64/340.107/NVIDIA-Linux-x86_64-340.107.run&lang=us&type=TITAN Prerequisite 1: Nvidia driver ]
*[https://github.com/NVIDIA/nvidia-docker Pre-requisite 2: nvidia-docker]
+
*[https://github.com/NVIDIA/nvidia-docker Prerequisite 2: nvidia-docker]
 
*[https://github.com/ufoym/deepo Deepo (for GPU)]
 
*[https://github.com/ufoym/deepo Deepo (for GPU)]
 +
 +
==Run Deepo image with Docker:==
 +
*sudo nvidia-docker run -it ufoym/deepo:gpu bash
 +
 +
==Run Deepo image with Docker (with python 2.7):==
 +
*sudo nvidia-docker run -it ufoym/deepo:py27 bash
 +
 +
[[Category: AI & Machine Learning]]

Latest revision as of 10:22, 25 November 2022

ML Docker Image installed on the Interaction Station ML computers (Ubuntu 16.04):

Installing Docker CE:

Change Docker root dir using systemd (Don't do this, set volume instead)

Docker - clean up all the volumes

  • sudo docker system prune -a -f --volumes


Installing nvidia-docker v1 (deprecated!):

Installing docker-compose:

Installing nvidia-docker-compose:

Using Docker with nvidia-docker-compose

  • Dir structure:
  • docker-compose.yml
  • deepo
  • deepo/do_not_finish.sh
  • deepo/Dockerfile
  • deepo_data (folder that is visible by deepo image)
  • docker-compose.yml:
version: '3'
services:
  #machine name
  deepo:
    #container name
    container_name: deepo
    #path to Dockerfile
    build: deepo
    command: sh do_not_finish.sh
    volumes:
      - ./deepo_data:/media/deepo_data
    tty: true
  • Dockerfile:

FROM ufoym/deepo ADD do_not_finish.sh /

  • do_not_finish.sh:
  1. !/bin/bash

sh -c 'while :; do sleep 100; done'

  • We need that endless loop, because docker-compose closes the container when is deployed
  • The endless loop allowed us to use it with a docker exec

Run it

  • Steps 1 and 2: Within the folder where is the docker-compose.yml file
  • sudo nvidia-docker-compose build
  • sudo nvidia-docker-compose up
  • Step 3: From another terminal:
  • sudo nvidia-docker exec -it deepo bash

Troubleshooting problems


Deepo

It includes:

  • cudnn
  • theano
  • tensorflow
  • sonnet
  • pytorch
  • keras
  • lasagne
  • mxnet
  • cntk
  • chainer
  • caffe
  • caffe2
  • torch


Installing Deepo:

Run Deepo image with Docker:

  • sudo nvidia-docker run -it ufoym/deepo:gpu bash

Run Deepo image with Docker (with python 2.7):

  • sudo nvidia-docker run -it ufoym/deepo:py27 bash