Difference between revisions of "MediaPipe for TouchDesigner"

From Interaction Station Wiki
Jump to navigation Jump to search
Line 320: Line 320:
  
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
<pre>
 +
# me - this DAT
 +
# scriptOp - the OP which is cooking
 +
 +
import numpy as np
 +
import cv2
 +
import mediapipe as mp
 +
 +
mp_drawing = mp.solutions.drawing_utils
 +
mp_pose = mp.solutions.pose
 +
 +
pose = mp_pose.Pose(
 +
min_detection_confidence=0.5,
 +
min_tracking_confidence=0.5,
 +
enable_segmentation=True
 +
)
 +
 +
 +
# press 'Setup Parameters' in the OP to call this function to re-create the parameters.
 +
def onSetupParameters(scriptOp):
 +
return
 +
 +
# called whenever custom pulse parameter is pushed
 +
def onPulse(par):
 +
return
 +
 +
 +
def onCook(scriptOp):
 +
input = scriptOp.inputs[0].numpyArray(delayed=True)
 +
if input is not None:
 +
image = cv2.cvtColor(input, cv2.COLOR_RGBA2RGB)
 +
image *= 255
 +
image = image.astype('uint8')
 +
results = pose.process(image)
 +
 +
if results.segmentation_mask is not None:
 +
rgb = cv2.cvtColor(results.segmentation_mask, cv2.COLOR_GRAY2RGB)
 +
rgb = rgb * 255
 +
rgb = rgb.astype(np.uint8)
 +
scriptOp.copyNumpyArray(rgb)
 +
else:
 +
black = np.zeros(image.shape, dtype=np.uint8)
 +
scriptOp.copyNumpyArray(black)
 +
return
 +
 +
</pre>
  
 
===4.posture tracking PoseCHOP ===
 
===4.posture tracking PoseCHOP ===

Revision as of 15:14, 21 September 2022

MediaPipe for TouchDesigner

On Apple Silicon (M1) using Rosetta2

We will install an emulated x86_64 brew using Rosetta2 alongside native Apple Silicon brew. This way we can install the by TouchDesigner expected python3.7 while also installing the MediaPipe module.

There is a MediaPipe module build for Apple Silicon (M1) machines found at [this Github issue](https://github.com/google/mediapipe/issues/3277), but I couldn't find a native Python 3.7 build for Apple Silicon to run in TouchDesigner.

Install brew x86_64 using Rosetta2

$ arch -x86_64 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

Make alias for x86_64 brew

Add this to rc file (.bashrc, .zshrc etc)

alias ibrew="arch -x86_64 /usr/local/bin/brew"

Install python3.7

$ ibrew install python@3.7

Alias for python@3.7 and pip3

Add to rc file

alias iPY37=/usr/local/opt/python@3.7/bin/python3
alias iPIP37=/usr/local/opt/python@3.7/bin/pip3

Now you can use `iPY37` to run x86_64 python@3.7 and `iPIP37` to install packages.

Install Mediapipe for python@3.7 x86_64

$ iPIP37 install mediapipe

Find python@3.7 x86_64 module path

Find the Python Module path of installed x86_64 python@3.7

$ ibrew --prefix

/usr/local

Append `/lib/python3.7/site-packages` to this path to get `/usr/local/lib/python3.7/site-packages`. This is the *Python 64-bit Module Path* you need to fill in TouchDesigner by going to `Preferences -> general -> Python 64-bit Module Path`

Restart TouchDesigner

Mediapipe should be installed! To verify the installation go to `Dialogs -> Textport and DATs`, import the MediaPipe module; `import mediapipe as mp` and list the components; `print(dir(mp.solutions))`

Windows

For windows we need to have a parallel copy of the same Python version on the harddrive. TouchDesigner expects us to work with Python3.7.x so grab this version from the [Python website](https://www.python.org/downloads/windows/). I used [Python 3.7.9](https://www.python.org/ftp/python/3.7.9/python-3.7.9-amd64.exe) for this tutorial.

Install excecutable

Double-click the downloaded executable file and install Python to the `DataStorage` drive `E:/` in a folder named `Python`

Installing MediaPipe

To install MediaPipe for our newly installed Python, open Windows PowerShell and run the following commands

$ python

...
Python 3.7.9
...

$ exit()
  • Note: Check if the Python version corresponds with the Python you've installed in step 1.*

Install mediapipe using pip package manager:

$ pip install mediapipe

Open TouchDesigner starter

Download the [MediaPipe starter project](http://interactionstation.wdka.hro.nl/mediawiki/images/a/a5/Mp-starter-toe.zip), unzip it and double-click to open the project in TouchDesigner. If you installed Python3.7 in a different folder than `E:\Python\Lib\site-packages` you need to change the `pythonpath` variable within the `DAT Excecute` OP to the correct folder.

To check if you can use MediaPipe in TouchDesigner, navigate to `Dialogs -> Textport and DATs`, import the MediaPipe module; `import mediapipe as mp` and list the components; `print(dir(mp.solutions))`.


what you also can do is use DAT Execute OP and copy and paste the code below.

Starter code:

# me - this DAT
# 
# frame - the current frame
# state - True if the timeline is paused
# 
# Make sure the corresponding toggle is enabled in the Execute DAT.

def onStart():
	import sys
	
	pythonpath = "E:/Python/Lib/site-packages"
	sys.path = [pythonpath] + sys.path
	return

def onCreate():
	return

def onExit():
	return

def onFrameStart(frame):
	return

def onFrameEnd(frame):
	return

def onPlayStateChange(state):
	return

def onDeviceChange():
	return

def onProjectPreSave():
	return

def onProjectPostSave():
	return

MediaPipe in TouchDesigners

1.faceDetect-CHOP

The code for script CHOP:

first, put a script CHOP on the empty network. and paste the code below:


# me - this DAT
# scriptOp - the OP which is cooking

import numpy as np
import cv2
import sys
import mediapipe as mp

mp_face = mp.solutions.face_detection
face_detection = mp_face.FaceDetection(
    min_detection_confidence=0.7
)

# press 'Setup Parameters' in the OP to call this function to re-create the parameters.
def onSetupParameters(scriptOp):
    page = scriptOp.appendCustomPage('Custom')
    topPar = page.appendTOP('Face', label='Image with face')
    return

# called whenever custom pulse parameter is pushed
def onPulse(par):
	return

def onCook(scriptOp):
    scriptOp.clear()
    topRef = scriptOp.par.Face.eval()
    
    num_faces = 0
    max_area = sys.float_info.min
    width = 0
    height = 0
    xmin = 0.5
    ymin = 0.5
    lx = sys.float_info.max
    ly = sys.float_info.max
    rx = sys.float_info.max
    ry = sys.float_info.max
   
    if topRef:
        img = topRef.numpyArray(delayed=True)
        frame = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
        frame *= 255
        frame = frame.astype('uint8')
        results = face_detection.process(frame)
        
        if results.detections:
            num_faces = len(results.detections)
            
            for face in results.detections:
            	area = face.location_data.relative_bounding_box.width * face.location_data.relative_bounding_box.height
            	if area > max_area:
            		width = face.location_data.relative_bounding_box.width
            		height = face.location_data.relative_bounding_box.height
            		xmin = face.location_data.relative_bounding_box.xmin + width/2.0
            		ymin = 1 - (face.location_data.relative_bounding_box.ymin + height/2.0)
            		lx = face.location_data.relative_keypoints[0].x
            		ly = 1 - face.location_data.relative_keypoints[0].y
            		rx = face.location_data.relative_keypoints[1].x
            		ry = 1 - face.location_data.relative_keypoints[1].y
                    
            		max_area = area
        
    tf = scriptOp.appendChan('face')
    tw = scriptOp.appendChan('width')
    th = scriptOp.appendChan('height')
    tx = scriptOp.appendChan('tx')
    ty = scriptOp.appendChan('ty')
    leftx = scriptOp.appendChan('left_eye_x')
    lefty = scriptOp.appendChan('left_eye_y')
    rightx = scriptOp.appendChan('right_eye_x')
    righty = scriptOp.appendChan('right_eye_y')
    nosex = scriptOp.appendChan('nose_x')
    nosey = scriptOp.appendChan('nose_y')
    tf.vals = [num_faces]
    tw.vals = [width]
    th.vals = [height]
    tx.vals = [xmin]
    ty.vals = [ymin]
    
    leftx.vals = [lx]
    lefty.vals = [ly]
    rightx.vals = [rx]
    righty.vals = [ry]
   
   
    scriptOp.rate = me.time.rate

    return

2.Hand Tracking CHOP-the index finger

# me - this DAT
# scriptOp - the OP which is cooking

import numpy as np
import cv2
import mediapipe as mp

mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
	max_num_hands=1,
	min_detection_confidence=0.5,
	min_tracking_confidence=0.5
)

# press 'Setup Parameters' in the OP to call this function to re-create the parameters.
def onSetupParameters(scriptOp):
	page = scriptOp.appendCustomPage('Custom')
	p = page.appendTOP('Image', label='Video image')
	return

# called whenever custom pulse parameter is pushed
def onPulse(par):
	return

def onCook(scriptOp):
	scriptOp.clear()
	input = scriptOp.par.Image.eval().numpyArray(delayed=True)
	image = cv2.cvtColor(input, cv2.COLOR_RGBA2RGB)
	image *= 255
	image = image.astype('uint8')
	results = hands.process(image)

	wrist = []
	index_tip = []
	num_hands = 0
	if results.multi_hand_landmarks:
		num_hands += 1
		for hand in results.multi_hand_landmarks:
			wrist.append(hand.landmark[0])
			index_tip.append(hand.landmark[8])

	tf = scriptOp.appendChan('hands')
	tf.vals = [num_hands]
	
	if len(wrist) > 0:
		twx = scriptOp.appendChan('wrist:x')
		twy = scriptOp.appendChan('wrist:y')

		twx.vals = [wrist[0].x]
		twy.vals = [wrist[0].y]
		
	if len(index_tip) > 0:
		tix = scriptOp.appendChan('index_tip:x')
		tiy = scriptOp.appendChan('index_tip:y')
		
		tix.vals = [index_tip[0].x]
		tiy.vals = [index_tip[0].y]
		
	scriptOp.rate = me.time.rate
	
	return

2.Hand Tracking CHOP-all fingers

3.background replacement Selfie segmentation

# me - this DAT
# scriptOp - the OP which is cooking

import numpy as np
import cv2
import mediapipe as mp

mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose

pose = mp_pose.Pose(
	min_detection_confidence=0.5,
	min_tracking_confidence=0.5,
	enable_segmentation=True
)


# press 'Setup Parameters' in the OP to call this function to re-create the parameters.
def onSetupParameters(scriptOp):
	return

# called whenever custom pulse parameter is pushed
def onPulse(par):
	return


def onCook(scriptOp):
	input = scriptOp.inputs[0].numpyArray(delayed=True)
	if input is not None:
		image = cv2.cvtColor(input, cv2.COLOR_RGBA2RGB)
		image *= 255
		image = image.astype('uint8')
		results = pose.process(image)
		
		if results.segmentation_mask is not None:
			rgb = cv2.cvtColor(results.segmentation_mask, cv2.COLOR_GRAY2RGB)
			rgb = rgb * 255
			rgb = rgb.astype(np.uint8)
			scriptOp.copyNumpyArray(rgb)
		else:
			black = np.zeros(image.shape, dtype=np.uint8)
			scriptOp.copyNumpyArray(black)
	return

4.posture tracking PoseCHOP

examples link: