Energy for Designers

From Interaction Station Wiki
Revision as of 11:01, 21 November 2022 by Annasa (talk | contribs)
Jump to navigation Jump to search

Energy for Designers intro

Energy is one of the big challenges of our society to be solved by you as an inventor designer. We will be trying out weird ways to generate and harvest energy, like algae, chocolate, dance floor, mud, a Joule Thief, body heat and ice. We will also compare this to energy made with a potato, a solar cell, a wind turbine. Or just hack and be an energy parasite! With this experience, you will experiment further and connect your source of energy to your design idea. This can be a product, fashion, or a drawing, illustration, a knitting, architecture or a poster.

What is energy?

Cappuccino Energy
47 kcal = 197 kJ (per 100 ml)
12 minutes vacuum cleaning
Smart phone battery: 47.5 kJ = 10 kcal

Big energy for heating houses, cities.

Small energy for your own gadgets and hacks and smart textiles, or charging your smart phones.

Nano energy, from plants, algae, bacteria.

What is the shape or form of energy as a "design element"?
Is energy "just a power source" in a design or
Can a designer or artist give energy an autonomous place in a design?

Links to presentations

General intro ppt : http://www.contrechoc.com/backup/energy_for_designers.ppt

Joule Thief - boosting voltage: http://www.contrechoc.com/backup/Joule_Thief.ppt

Basic electronics, Soldering: http://www.contrechoc.com/backup/soldering.ppt

Soldering the ATtiny85 with sensors in steps: http://www.contrechoc.com/backup/Sensor_ATtiny85.ppt

Designer and Artist examples

Ermi.png Moss.png
Ermi van Oers, Living Light

Plant Energy, nano energy domain

lighting up an led once in a while

energy coming from bacteria around the roots

Cambridge Moss Table

Plant Energy, non functioning, speculative design

Pauline.png Dance.png
Pauline van Dongen, solar garment

charging your cell phone in 2 days

Sustainable dance floor

Using the weight and movement of the dancers

the floor pieces generate energy

Par1.png Par2.png
Parasites of wasted energy in the city

experimental setups, making use of heat outlets,

running streetcars/trams, wind in the metro, wifi energy
Artenergy.png
http://userwww.sfsu.edu/infoarts/harvest/show.html
Vs4.png Vs3.png Vs2.png Vs1.png
Victory over The Sun

Beam project 2015

https://www.flickr.com/photos/contrechoc/albums/72157689160056833

Two types of energy: solar cell energy and hand crank muscle energy

Which is winning? Two indication lights strips

The problem was after a winner, to get rid of the energy In the back the energy is waisted, to be able to start the game again.

Week 1 - Day 1

General intro ppt : http://www.contrechoc.com/backup/energy_for_designers.ppt

A Dutch windmill in action [1]

How the people in the Middle Ages managed to lift stones to make cathedrals - big wheels, not for running mice, but running men!

My toy steam engine is running on a blower [2]

A steam engine is making movement from heating
Because we are nowadays doing everything electrically
we have nearly forgotten "movement" as "energy"

Potato power

A potato is so nice!
Because it is a battery with it's own skin
The "power" is a bit limited though, even in series

Getting energy out of ice and my hand - energy harvesting with a Peltier element [3]

This is called energy harvesting
My hand is not a good source of energy
The heat from my hand connected to ice can make an LED blink
But then it gets cold fast

Solar cells of course.

Hand crank devices

Mill.png

Windmill at Delfshaven, impressive if it turns in the wind.

Steam.png

Steam engine toy from 50 years ago. It still functions...compare that to an iMac....

Chinese.png

Ingenious charging device, with many lessons to learn from

Enha1.png

Solar cell with energy harvesting chip, part of Beam's Portable sensor lab

Plant power (indicating a voltage and a current, but there is no "power")...

Pl1.png

Some current

Pl2.png

Some voltage

Discussion:
We also talked about this question: What is more interesting 
for a designer...
Something that works or something that maybe (not) works
For example, a solar cell (works) or a plant (who knows if it works)

Week 1 - Day 2

Technical day:

You have to know 2 laws to be able to do some calculations of electrical energy
Ohms law V = I * R
Power law P = V * I
The laws seem to be simple, but the combinations, in series and in parallel for example make life a bit more complicated.

Basic electronics, Soldering: http://www.contrechoc.com/backup/soldering.ppt

We made the Joule Thief: http://www.contrechoc.com/backup/Joule_Thief.ppt

Basic calculations, numbers

Consider the energy required to heat 1.0 kg of water from 0 oC to 100 oC when the specific heat of water is 4.19 kJ/kgoC:
Q = (4.19 kJ/kgoC) (1.0 kg) ((100 oC) - (0 oC))
    = 419 (kJ) equivalent to 100 kcalori (food units)
Banana 93 kcal =  390 kJ 
One banana = boiling water for one cup of tea (1/4 of a liter)
lifting a mass of 100 kg an elevation of 10 m = 9810  J = 10 kJ
Pro 20 climbing stairs =  5 kcal = 20 kJ. 
15 Minutes Walking around 50 kcal = 200 kJ
Smart phone battery 3300 mAH -> 4Volt * 3.3A * 3600 (seconds) 
= 47.5 kJ roughly equal to about 1/8 of a banana
The energy by mass of gasoline is over 12,000Wh/kg. In contrast, a modern Li-ion battery only carries a bout 200Wh/kg; (https://batteryuniversity.com/index.php/learn/article/comparing_the_battery_with_other_power_sources
But there are all sorts of “problems”, you never get full energy out of something!
Some examples of the many electrical power sources, batteries:
Batteries, 3V, 1.5V, power of a battery
Lipo, power cells
Joule Thief - boosting voltage:  http://www.contrechoc.com/backup/Joule_Thief.ppt
Potato battery
Mud Algae, plant - cell battery
Bike dynamo set up
Hand charging devices IKEA made
Solar cell examples IKEA
Sol1.png

Soldering, ppt:

Jt1.png

We made a Joule Thief, boosting device,

ppt: http://www.contrechoc.com/backup/Joule_Thief.ppt

Jt2.png

Week 1 - Day 3

Starting your own assignment considerations

Making the paper generator

Paper.png

https://makezine.com/projects/power-paper-circuits-with-static-electricity/

https://makezine.com/2013/10/10/new-technology-paper-generators-harvest-static-electricity/

Finishing the Joule Thief

Week 1 - Day 4

Working on your own

Week 1 - Day 5

Working on your own

Week 2 - Day 1

Tutoring

Intro microcontrollers

Soldering the ATtiny85 with sensors in steps: http://www.contrechoc.com/backup/Sensor_ATtiny85.ppt

Adding sensors to a microcontroller

Pressure44.png

Pressure sensor

Ntcc.png

Temperature sensor

Ldr11.png

Light Sensor

Week 2 - Day 2

Working on your own

Week 2 - Day 3

Tutoring

Week 2 - Day 4

Working on your own

Finishing, testing

Week 2 - Day 5

Presentation day!