Docker
Revision as of 06:07, 12 October 2018 by Javi (talk | contribs) (→Installing nvidia-docker-compose:)
ML Docker Image installed on the Interaction Station ML computers (Ubuntu 16.04):
Installing Docker CE:
- sudo apt-get install apt-transport-https ca-certificates curl software-properties-common
- curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
- sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu xenial stable"
- sudo apt-get update
- More info: https://unix.stackexchange.com/questions/363048/unable-to-locate-package-docker-ce-on-a-64bit-ubuntu
Change Docker root dir using systemd (Don't do this, set volume instead)
- systemctl status docker.service
- sudo nano /etc/default/docker
- Edit ExecStart line to look like this ExecStart =/usr/bin/dockerd -g /media/MachineLearning/docker -H fd://
- systemctl daemon-reload
- systemctl restart docker
- sudo docker info - verify the root dir has updated
- https://github.com/IronicBadger/til/blob/master/docker/change-docker-root.md
Docker - clean up all the volumes
- sudo docker system prune -a -f --volumes
Installing nvidia-docker:
- #nvidia-docker2 still not supported by nvidia-docker-composite
- docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
- sudo apt-get purge -y nvidia-docker
- curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
- sudo apt-key add -
- distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
- curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
- sudo tee /etc/apt/sources.list.d/nvidia-docker.list
- sudo apt-get update
- sudo apt-get install -y nvidia-docker
- sudo pkill -SIGHUP dockerd
- #Test nvidia-smi with the latest official CUDA image
- docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi
- Link:
- https://github.com/NVIDIA/nvidia-docker
Installing docker-compose:
Installing nvidia-docker-compose:
- pip install nvidia-docker-compose
- link: https://hackernoon.com/docker-compose-gpu-tensorflow-%EF%B8%8F-a0e2011d36
- Permission Denied on curl and save for docker compose: https://github.com/docker/machine/issues/652
Using Docker with nvidia-docker-composite
- Check nvidia-docker version (needs to be version 1)
- nvidia-docker version
- More info:
- https://github.com/eywalker/nvidia-docker-compose/issues/26
Troubleshooting problems
- Permission denied: u'./docker-compose.yml
- https://github.com/docker/docker-snap/issues/26
Deepo
It includes:
- cudnn
- theano
- tensorflow
- sonnet
- pytorch
- keras
- lasagne
- mxnet
- cntk
- chainer
- caffe
- caffe2
- torch
Installing Deepo:
Run Deepo image with Docker:
- sudo nvidia-docker run -it ufoym/deepo:gpu bash
Run Deepo image with Docker (with python 2.7):
- sudo nvidia-docker run -it ufoym/deepo:py27 bash
Setting up ML computers:
- Linux distribution installed: Ubuntu 16.04
Partition made for machine learning:MachineLearning
- In Windows: Disk Management -> Resize DataStorage
- Create new ext4 patition
Mounting the partition automatically:
Get the UUID of the learning:MachineLearning partition
- sudo blkid
Add partition to fstab:
- sudo nano /etc/fstab
- Add at the bottom these two lines:
- UUID=(id of the MachineLearning partition) /media/MachineLearning rw,suid,dev,auto,user,async,exec 0 2
- UUID=(id of the DataStorage partition) /media/DataStorage ntfs-3g defaults=en_US.UTF-8 0 0
- The parameters mounting the MachineLearning partition solved this problem running caffe from that partition:
- https://github.com/rbgirshick/py-faster-rcnn/issues/162
- https://askubuntu.com/questions/678857/fstab-doesnt-mount-with-exec
Give writing permissions to new MachineLearning partition
- sudo chmod -R a+rwx /media/MachineLearning/
- Need extra space? Extending the partition
https://askubuntu.com/questions/492054/how-to-extend-my-root-partition
Installing NVIDIA Driver:
- Set Ubuntu to boot on console mode. Type:
- sudo apt-get install systemd
- sudo systemctl set-default multi-user.target
- sudo reboot now
- Login and in console mode, type:
- sudo add-apt-repository ppa:graphics-drivers/ppa
- sudo apt update
- sudo apt upgrade
- For GeForce 1070Ti (07/2018), type:
- sudo apt-get install nvidia-390
- Re-set Ubuntu to boot on graphical mode. Type:
- sudo systemctl set-default graphical.target
- sudo reboot now
Checking if Nvidia Driver is properly installed. Type:
- nvidia-smi
- nvidia-settings
Installing CUDA 9.0 for Ubuntu 16.04 (the latest version is not supported by TensorFlow):
- wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
- wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libcudnn7_7.0.5.15-1+cuda9.0_amd64.deb
- wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libcudnn7-dev_7.0.5.15-1+cuda9.0_amd64.deb
- wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libnccl2_2.1.4-1+cuda9.0_amd64.deb
- wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libnccl-dev_2.1.4-1+cuda9.0_amd64.deb
- sudo dpkg -i cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
- sudo dpkg -i libcudnn7_7.0.5.15-1+cuda9.0_amd64.deb
- sudo dpkg -i libcudnn7-dev_7.0.5.15-1+cuda9.0_amd64.deb
- sudo dpkg -i libnccl2_2.1.4-1+cuda9.0_amd64.deb
- sudo dpkg -i libnccl-dev_2.1.4-1+cuda9.0_amd64.deb
- sudo apt-get update
- sudo apt-get install cuda=9.0.176-1
- sudo apt-get install libcudnn7-dev
- sudo apt-get install libnccl-dev
- sudo reboot now
- export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
- export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
- sudo nano .bashrc
- Add the two last export lines at the end of the file. Save and reboot.
Checking if CUDA is properly installed. Type:
- nvcc --version
Resources used:
- https://askubuntu.com/questions/61396/how-do-i-install-the-nvidia-drivers
- https://medium.com/@bbloks/a-machine-learning-environment-with-ubuntu-and-gpu-acceleration-in-5-steps-765608325356
- https://yangcha.github.io/CUDA90/
Other options:
NTFS fstab wizard:
- sudo apt-get install ntfs-config
- sudo ntfs-config
Format large capacity HD with fs ExFat for having access to it from Ubuntu:
- On Windows 10
- cmd
- diskpart
- select disk '#' (where # is the number of the target drive)
- list part
- select part # (where # is the number of the partition)
- format fs=exfat QUICK