Using motion recognition on the Arduino
Explanation coming soon ...
Sender (Central)
Swap out the first line with your trained model library
#include <Interfaces-Sense_inferencing.h> // Change to your model library
#include <ArduinoBLE.h>
#include <Arduino_APDS9960.h>
#include <Arduino_LSM9DS1.h>
#define CONVERT_G_TO_MS2 9.80665f
#define MAX_ACCEPTED_RANGE 2.0f
static bool debug_nn = false;
const char* deviceServiceUuid = "19b10000-e8f2-537e-4f6c-d104768a1214";
const char* deviceServiceCharacteristicUuid = "19b10001-e8f2-537e-4f6c-d104768a1214";
int gesture = -1;
int oldGestureValue = -1;
void setup() {
Serial.begin(9600);
pinMode(LEDR, OUTPUT);
pinMode(LEDG, OUTPUT);
pinMode(LEDB, OUTPUT);
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LEDR, LOW);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);
digitalWrite(LED_BUILTIN, LOW);
if (!IMU.begin()) {
Serial.println("- Failed to initialize accelerometer!");
}
else {
Serial.println("- Accelerometer initialized!");
}
if (EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME != 3) {
Serial.println("EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME should be equal to 3 (x,y,z)");
return;
}
if (!BLE.begin()) {
Serial.println("- Starting BLE module failed!");
while (1);
}
BLE.setLocalName("Nano 33 BLE Sense (Central)");
BLE.advertise();
}
void loop() {
connectToPeripheral();
}
void connectToPeripheral(){
BLEDevice peripheral;
Serial.println("- Discovering peripheral device...");
do
{
BLE.scanForUuid(deviceServiceUuid);
peripheral = BLE.available();
} while (!peripheral);
if (peripheral) {
Serial.println("* Peripheral device found!");
Serial.print("* Device MAC address: ");
Serial.println(peripheral.address());
Serial.print("* Device name: ");
Serial.println(peripheral.localName());
Serial.print("* Advertised service UUID: ");
Serial.println(peripheral.advertisedServiceUuid());
Serial.println(" ");
BLE.stopScan();
controlPeripheral(peripheral);
}
}
void controlPeripheral(BLEDevice peripheral) {
Serial.println("- Connecting to peripheral device...");
if (peripheral.connect()) {
Serial.println("* Connected to peripheral device!");
Serial.println(" ");
// Change LED to green
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, LOW);
digitalWrite(LEDB, HIGH);
digitalWrite(LED_BUILTIN, LOW);
} else {
Serial.println("* Connection to peripheral device failed!");
Serial.println(" ");
return;
}
Serial.println("- Discovering peripheral device attributes...");
if (peripheral.discoverAttributes()) {
Serial.println("* Peripheral device attributes discovered!");
Serial.println(" ");
} else {
Serial.println("* Peripheral device attributes discovery failed!");
Serial.println(" ");
peripheral.disconnect();
return;
}
BLECharacteristic gestureCharacteristic = peripheral.characteristic(deviceServiceCharacteristicUuid);
if (!gestureCharacteristic) {
Serial.println("* Peripheral device does not have gesture_type characteristic!");
peripheral.disconnect();
return;
} else if (!gestureCharacteristic.canWrite()) {
Serial.println("* Peripheral does not have a writable gesture_type characteristic!");
peripheral.disconnect();
return;
}
while (peripheral.connected()) {
gesture = gestureDetection();
if (oldGestureValue != gesture) {
oldGestureValue = gesture;
Serial.print("- Writing value to gesture characteristic: ");
Serial.println(gesture);
gestureCharacteristic.writeValue((byte)gesture);
Serial.println("- Writing value to gesture characteristic done!");
Serial.println(" ");
}
}
Serial.println("- Peripheral device disconnected!");
// Change LED to red
digitalWrite(LEDR, LOW);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);
digitalWrite(LED_BUILTIN, LOW);
}
int gestureDetection()
{
int gesture_index;
Serial.println("- Start inferencing in 2 second...");
delay(2000);
Serial.println("- Getting accelorometer sample...");
// Allocate a buffer here for the values we'll read from the IMU
float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = { 0 };
for (size_t ix = 0; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix += 3) {
// Determine the next tick (and then sleep later)
uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS * 1000);
IMU.readAcceleration(buffer[ix], buffer[ix + 1], buffer[ix + 2]);
for (int i = 0; i < 3; i++) {
if (fabs(buffer[ix + i]) > MAX_ACCEPTED_RANGE) {
buffer[ix + i] = ei_get_sign(buffer[ix + i]) * MAX_ACCEPTED_RANGE;
}
}
buffer[ix + 0] *= CONVERT_G_TO_MS2;
buffer[ix + 1] *= CONVERT_G_TO_MS2;
buffer[ix + 2] *= CONVERT_G_TO_MS2;
delayMicroseconds(next_tick - micros());
}
// Turn the raw buffer in a signal which we can the classify
signal_t signal;
int err = numpy::signal_from_buffer(buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
if (err != 0) {
Serial.println("Failed to create a signal!");
return -1;
}
// Run the classifier
ei_impulse_result_t result = { 0 };
err = run_classifier(&signal, &result, debug_nn);
if (err != EI_IMPULSE_OK) {
Serial.println("Failed to run classifier!");
return -1;
}
for (int ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
if (result.classification[ix].value > 0.8) {
gesture_index = ix;
Serial.println(" ");
Serial.print("* Detected gesture: ");
Serial.print(result.classification[ix].label);
Serial.print(" with index number: ");
Serial.println(ix);
Serial.println(" ");
}
}
return gesture_index;
}
float ei_get_sign(float number) {
return (number >= 0.0) ? 1.0 : -1.0;
}