Demystifying the Æther​

From Interaction Station Wiki
Revision as of 23:30, 8 January 2023 by Oyo (talk | contribs)
Jump to navigation Jump to search

LVEP.jpg

Surrounded by noise

In this elective, we will explore the world of electromagnetic waves and their omnipresence in our lives. We will materialize the invisible, making it audible. With sound artist Matthias Hurtl (https://drowning.in/aether/research) (in collaboration with the Interaction Station) we are going to learn about the basic principles of radio broadcasting and software-defined radio. We will demystify radio signals and other electromagnetic waves that fill the Æther. The Æther is a medium that was once supposed to fill all space and support the propagation of electromagnetic waves, an intervening substance through which signals can travel as a means of communication. We will delve into the narratives of the invisible signals around us that illustrate the expansive, systemic, and geological attributes of the Technosphere.

Based on simple experiments with various forms of radio communication, like building a micro pirate radio station with Raspberry Pi, and constructing antennas to capture satellite signals and other electromagnetic waves, students will acquire all necessary skills for their assignment.

We will work at the Interaction Station and outdoors.


Inductive sniffing

instruments

LOM LOM's Electrosluch an open-source device for electromagnetic listening. It allows one to discover sonic worlds of electromagnetic fields, surrounding our every step. Just plug your headphones & explore. It has two inductors, allowing for stereo audio signal. It also has an onboard opamp. It brings about rather directional, close distance, intimate listening.

LOM's Priezor is an open-source passive magnetic antenna for electromagnetic listening. It is very sensitive and capable of capturing faint atmospheric events in VLF radio bands. Compared to regular Elektrosluch, it is less directional and focused, and therefore more useful in recording ambient electromagnetic fields, where the overall "sound of the place" is desired. If built as intended has a frequency response: 20 Hz – 90+ kHz